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A B S T R A C T

Currently, design and optimisation of biotechnological bioprocesses is performed either through exhaustive
experimentation and/or with the use of empirical, unstructured growth kinetics models. Whereas, elaborate
systems biology approaches have been recently explored, mixed-substrate utilisation is predominantly ignored
despite its significance in enhancing bioprocess performance. Herein, bioprocess optimisation for an industrially-
relevant bioremediation process involving a mixture of highly toxic substrates, m-xylene and toluene, was
achieved through application of a novel experimental-modelling gene regulatory network – growth kinetic
(GRN-GK) hybrid framework. The GRN model described the TOL and ortho-cleavage pathways in Pseudomonas
putida mt-2 and captured the transcriptional kinetics expression patterns of the promoters. The GRN model
informed the formulation of the growth kinetics model replacing the empirical and unstructured Monod kinetics.
The GRN-GK framework's predictive capability and potential as a systematic optimal bioprocess design tool, was
demonstrated by effectively predicting bioprocess performance, which was in agreement with experimental
values, when compared to four commonly used models that deviated significantly from the experimental values.
Significantly, a fed-batch biodegradation process was designed and optimised through the model-based control
of TOL Pr promoter expression resulting in 61% and 60% enhanced pollutant removal and biomass formation,
respectively, compared to the batch process. This provides strong evidence of model-based bioprocess optimi-
sation at the gene level, rendering the GRN-GK framework as a novel and applicable approach to optimal bio-
process design. Finally, model analysis using global sensitivity analysis (GSA) suggests an alternative, systematic
approach for model-driven strain modification for synthetic biology and metabolic engineering applications.

1. Introduction

Until recently control of gene expression would be considered an
ambitious yet futile endeavour. Nowadays the machinery of DNA, RNA
and proteins are not only better understood, but also engineered to
make useful products. The ever increasing importance of biotechnolo-
gical applications and bioprocesses ranging from bioremediation to
high-added value biologics production and cellular therapeutics bio-
manufacturing necessitates control and optimisation of the process of
interest.

Pseudomonas putida is a metabolically versatile soil bacterium cap-
able of thriving in diverse habitats that degrades a series of industrially
significant pollutants (Timmis, 2002). The mt-2 strain encodes the TOL
plasmid incorporating the molecular toolbox required for the de-
gradation of aromatic compounds that belong to the toxic BTEX (ben-
zene-toluene-ethylbenzene-xylene isomers) group of pollutants.

Toluene and m-xylene are considered as the most common effectors of
the TOL plasmid (pWW0) (Timmis, 2002), the degradation of which
results in essential for biomass growth Krebs cycle intermediates. The
TOL regulatory network of P. putida mt-2 has been previously described
in detail (Ramos et al., 1997). In addition the TOL plasmid is considered
a paradigm of global and targeted gene regulation due to the interplay
between regulatory proteins, a group of sigma factors and DNA-bending
proteins that control transcription from the system's catabolic operons
constituting a complex regulatory gene network in its natural context
(Aranda-Olmedo et al., 2005).

Bioprocess optimisation requires monitoring and prediction of bio-
performance, use of mixed-substrates (Klecka and Maier, 1988; Lee and
Huang, 2000), accounting for the dynamic nature of the biosystem,
tailoring the feeding strategy of fed-batch/continuous processes, and
scale-up through optimisation of bioreactor design. Traditionally, bio-
process optimisation is accomplished through laborious
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experimentation with the aid of mathematical expressions of microbial
growth (Monod, 1949) which have been mainly developed for single
substrate systems and employ unstructured Monod kinetics (Fig. 1).
Monod-type models (Yano and Koga, 1969) are empirical and assume
existence of a single metabolic reaction that follows Michaelis-Menten
kinetics and which is responsible for substrate uptake. Models devel-
oped based on Monod expressions often lack fit and have narrow ap-
plicability, while ignoring transcriptional regulation (Kovarova-Kovara
and Egli, 1998).

More recently systems biology approaches integrate “omics” meth-
odologies and computational tools (Bartocci and Lió, 2016) to re-
construct genome-scale metabolic networks and attempt to predict
growth kinetics (O’Brien et al., 2013), which in turn could potentially
lead to system parts, control, optimisation and development of cell
engineering and robustness strategies (Gerstl et al., 2016; Ranganathan
et al., 2010). Genome-scale reconstruction is a time-consuming, ex-
perimentally-intensive, and mathematically challenging process that
ultimately lacks predictability. Successful activation of metabolic net-
works relies on transcriptional regulation initiating the appropriate
metabolic cascades. Significant progress on global gene regulatory
network modelling has been achieved but these models are prohibi-
tively complex, and reliable application of the approach remains an
underdetermined computational problem (Banf and Rhee, 2017). Al-
though genome-scale metabolic models may integrate transcriptomics
data (Akesson et al., 2004), the data sets involved are insufficient and
extracted using high-throughput technologies, such as microarrays and
RNA-sequencing, which are often noisy, high dimensional and sparse,
dramatically affecting quantitative analysis (Sławek and Arodz, 2013).
Moreover, the typical steady-state assumption entailed ignores dynamic
reality, often limiting the applicability of such models for optimal
bioprocess design (Fig. 1). Whereas, recently the importance of kinetic
genome-scale models has been recognised as a research toolkit in
biosciences (Almquist et al., 2014; Chakrabarti et al., 2013; Jamshidi
and Palsson, 2008), their applicability on scaling-up bioprocesses has
not yet been rendered feasible.

Herein, we present the dynamic modelling of the GRN of the main
metabolic pathway of P. putida mt-2 activated upon exposure to mixed-
substrates. The GRN model utilised consistent, systematic time-series
data of specific promoter(s) mRNA expression obtained through qPCR
(Fig. 1). Subsequently, we efficiently connected the GRN model to
growth kinetics (GK) resulting in prediction of mixed-substrates and

growth patterns. The GRN-GK framework was utilised to predict op-
timal bioprocess design. It is versatile and can be rendered applicable to
other host biological systems, including industrial microorganisms for
which control and optimisation is essential to overcome various tech-
nological barriers encountered in full-scale applications. Finally, ap-
plication of the framework on engineered GRNs may lead to predictable
and robust bioprocess operation serving as an advanced synthetic
biology tool with direct industrial applications in accelerating bio-
manufacturing and bioprocess scaling-up.

2. Materials and methods

2.1. Microbial cultures

Subcultures of P. putida mt-2 were pre-grown for 23 h at 30 °C in M9
minimal salts medium (Sambrook et al., 1989) supplemented with
10mM of succinate. In each experiment, two independent cultures were
prepared by diluting the overnight culture in minimal medium to an
initial optical density of 0.1 (0.4 L working volume) measured at
600 nm (UV-2101PC, Shimadzu, UK) for every condition tested. The
minimal medium was supplemented with toluene and m-xylene at the
concentration level required in each experiment. Cultures were per-
formed using conical Erlenmeyer flasks of 2.35 L total volume, which
were continuously stirred at 1000 rpm via a Heidolph MR3001K (Hei-
dolph, UK) magnetic stirrer. The flasks were filled with medium to one-
sixth of their volume (0.4 L), to ensure that sufficient oxygen was
available, and closed gas-tight with Teflon coated lids to avoid losses of
the volatile organic compound. Temperature was maintained constant
at 30 °C. All chemicals used were obtained from Sigma-Aldrich Com-
pany Ltd and were of ANALAR grade.

2.2. Substrate and biomass analyses

Gas Chromatograph (GC) analysis was employed for determination
of m-xylene and toluene concentration in the gaseous and aqueous
samples using an Agilent 6850 Series II Gas Chromatograph with a FID
detector and a ‘J&W Scientific’ (Agilent Technologies UK Limited, UK)
column with HP-1 stationary phase (30m×0.32mm × 0.25mm).
Gaseous samples of 25 μL were injected into the GC and the tempera-
ture program run at 70 °C for 3min and then increased to 80 °C at a rate
of 5 °Cmin−1. m-xylene and toluene concentration of the culture was

Fig. 1. (A) Bioprocess development
from cellular to industrial-scale level
driven by mathematical modelling
employing: (B) Monod kinetics, (C)
systems biology approaches, (D) the
GRN-GK framework; : to be
accomplished.
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determined experimentally as previously described (Koutinas et al.,
2010). Biomass concentration was determined by absorbance at 600 nm
on a UV-1800 scanning spectrophotometer (Shimadzu, UK) inter-
polating from a previously established dry weight calibration curve.
The coefficient of variation for 3 samples was 3.4% at a concentration
level of 1233mgbiomass L−1.

2.3. Preparation and Isolation of Total RNA, cDNA Synthesis and qPCR

Culture samples of 3–4.5 ml (depending on cell density) were placed
in cryogenic vials (Sigma-Aldrich Company Ltd, UK) and the cell pellet
was harvested by centrifugation at 15000 rpm for 10min at 4 °C. The
supernatant was discarded and the vials were immersed in liquid ni-
trogen for 1min and stored at− 80 °C until use. Real-Time Quantitative
Polymerase Chain Reaction (qPCR) was performed to determine the
expression of xylR (Pr promoter), xylS (Ps promoter), xylU (Pu pro-
moter), xylX (Pm promoter), benR (PbenR promoter), benA (PbenA
promoter) and rpoN (housekeeping) genes during the course of the
experiments. The method for isolation of total RNA and cDNA synthesis
has been previously described (Koutinas et al., 2010). The qPCR
method as well as the calculation of relative mRNA expression based on
threshold cycle values was conducted as previously (Koutinas et al.,
2011, 2010). The primer pairs of all genes used and the qPCR protocol
for PbenR and PbenA was presented previously (Tsipa et al., 2016).
qPCR analysis of promoters’ kinetics was conducted in triplicate mea-
surements for each time point.

2.4. Statistical analysis of experimental results

Two independent cultures were performed at each condition tested,
while promoters’ expression was measured in triplicates for each time
point. For each promoter, the average expression and standard devia-
tion was calculated. The error bars derived by dividing the standard
deviation with the square root of 6 because the promoter expression at
each time point was coming from two independent (biological) re-
plicates and three qPCR internal (technical) replicates measurements.
Increasing the number of independent replicates would increase the
robustness of the results.

One way ANOVA (SigmaStat version 3.5, Systat Software UK Ltd,
UK) was conducted to clarify significant differences in the mRNA ex-
pression profiles of all promoters. P-values were calculated through
comparison of the mean mRNA expression between two given time
points. The level of significance was accepted at P-values lower than
0.05.

2.5. Model analysis

Model simulation and parameter estimation were implemented in
the process modelling environment gPROMS® (Process Systems
Enterprise, 2014) and were computed on an Intel Core i7–2600 PC with
8 GB RAM running Windows 7.

2.5.1. Global sensitivity analysis
Global Sensitivity Analysis (GSA) identifies the most significant

model parameters and initialises parameter estimation. The outputs of
the model were: Pr, Ps, Pu, Pm, PbenR, PbenA, m-xylene, toluene and
biomass. It was examined how the model's outputs are affected by the
uncertainty forced through the parameter values and identified para-
meters crucial to the model's output (Kiparissides et al., 2009). Nominal
values from the Koutinas et al. (2011) model initialised GSA. Sobol's
method (Sobol, 2001) was used for GSA, while the method was im-
plemented in Matlab and connected to gPROMS via goMATLAB. Para-
meter significance was calculated using sensitivity indices (SI) ranging
from 0 (low significance) to 1 (high significance). It was assumed that
SIs higher than 0.1 were significant (Sidoli et al., 2005). The sensitivity
indexes were calculated on GUI-HDMR (Ziehn and Tomlin, 2009)

Matlab package. The random samples used were 5000 and nominal
values ranged± 10% due to the intrinsic complexity of the model re-
sulting in increased number of parameters. The time intervals examined
were selected either prior or after 120min and 420min of culture time
respectively, where the promoters’ expression demonstrated more dy-
namic profiles. Specifically these time points were 70, 100, 130, 180,
350 and 430min.

2.5.2. Parameter estimation in gPROMS
Parameter estimation in gPROMS is based on the Maximum

Likelihood formulation, which provides simultaneous estimation of
parameters in both the physical model of the process as well as the
variance model of the measuring instruments. gPROMS determines
values for the uncertain physical and variance model parameters, θ,
that maximise the probability that the mathematical model will predict
the measured values obtained from the experiments. Assuming valid
independent, normally distributed measurement errors, eijk, with zero
means and standard deviations, σijk, this maximum likelihood goal can
be captured through the following objective function:
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where N stands for total number of measurements taken during all the
experiments, θ is the set of model parameters to be estimated, NE is the
number of experiments performed, NVi is the number of variables
measured in the ith experiment and NMij is the number of measurements
of the jth variable in the ith experiment. The variance of the kth mea-
surement of variable j in experiment i is denoted as σijk2, while zijk is the
kth measured value of variable j in experiment i and zijk is the kth

(model-) predicted value of variable j in experiment i. The above for-
mulation can be reduced to a recursive least squares parameter esti-
mation if no variance model for the sensor is selected. Following GSA,
the parameters were estimated in gPROMS. The constant variance of
experimental results at each time point was set to 0.1.

2.5.3. Statistical analysis between model(s) simulation and experimental
results

The R2 correlation of determination calculated the goodness of fit
for experimentally determined: promoter expression, toluene and m-
xylene utilisation, as well as biomass formation patterns. R2 represents
the percent of the predicted data approximated by the experimental
results. In the GRN model, we evaluated R2 vector with respect to all six
promoters (Pr, Ps, Pu, Pm, PbenR and PbenA) at each time point because
the promoters constitute inter-dependent elements of a complex tran-
scriptional regulatory network. Furthermore, in the GRN-GK model, R2

vector was evaluated with respect to mixed-substrates utilisation and
biomass formation patterns because the predicted performance of the
bioprocess was the main aim of microbial growth kinetics modelling.

2.6. Dynamic optimisation

The developed GRN-GK model was subject to model analysis em-
ploying GSA followed by parameter estimation at fed-batch mode
(supplementary material, Table 9, 10, 11). Consequently, the optimi-
sation of the formulated problem (supplementary material, Table 12)
was performed providing the optimal substrate feeding strategy.

3. Results

3.1. Development of the dynamic hybrid GRN-growth kinetic model

A map of the paradigm targeted GRN depicting the transcriptional
regulation of aromatic pollutants in P. putida mt-2 is shown in Fig. 2.
The interacting molecular components of the GRN were implemented
as a scheme of logic gates, based on the principle of biochemical
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inverters (Weiss, 2001) representing a genetic circuit in direct analogy
to electronic systems. Specified combinations of the logic gates facil-
itate simpler descriptions of inherent regulatory loops. Hill functions
were employed as input functions to the genes, enabling dynamic
characterisation of bioprocess components (Alon, 2006). Despite the
very complex structure of the specific genetic circuit, from a mere en-
gineering point of view, dynamic modelling was possible facilitating in
depth understanding of the network's logic (Koutinas et al., 2010). In-
duction of the P. putida mt-2 with toluene activates the TOL and
chromosomal ortho-cleavage regulatory networks resulting in a cross-
talk between the two pathways (Cowles et al., 2000). To capture dual
substrate utilisation, we extended and upgraded previous work on m-
xylene and the TOL genetic circuit (Koutinas et al., 2011) to incorporate
qualitative information of the chromosomal pathway (supplementary
material, Table 1).

An independent experiment was performed to assess the GRN
model's structure. P. putida mt-2 cells were exposed to 0.7mM of m-
xylene and 0.7mM of toluene. Biomass, m-xylene and toluene con-
centrations were measured until both substrates were depleted (Fig. 3A,
B). The results revealed sequential substrate utilisation whereby m-xy-
lene was catabolised first followed by simultaneous biodegradation of
both substrates, which occurred when m-xylene concentration dropped
below 0.2 mM (Fig. 3B). Similar utilisation of the toluene/m-xylene
mixture has been observed (Duetz et al., 1998), although the threshold
for simultaneous degradation was found to be 0.5 mM of m-xylene. The
transcriptional kinetics of the promoters expressed was systematically
evaluated through time course qPCR analysis. Specifically, the kinetic
profiles of Pr (Fig. 3C), Ps (Fig. 3D), Pu (Fig. 3E) and Pm (Fig. 3F)
promoters of TOL as well as the key promoters PbenR (Fig. 3G) and
PbenA (Fig. 3H) of the ortho-cleavage regulatory network were assessed.
Expression of Pr confirmed a down-regulatory response upon exposure
to the aromatic compounds (Marques et al., 1998), while decrease in
toluene concentration below a threshold level of 0.3 mM resulted in
increased expression of Pr (Fig. 3C) (Tsipa et al., 2016).

A switch point in the response of the promoters was identified,
which occurred at the 0.2 mM m-xylene threshold concentration that
caused the onset of toluene degradation indicating the direct relation-
ship between substrate concentration and the GRN responsible for
substrate degradation. The GRN model structure was corrected to
capture the observed switches and provide flexibility (supplementary
material, Table 2). Ps, Pu and Pm (Fig. 3D-F) promoters displayed bi-

modal expression due to the presence of the double substrate (Tsipa
et al., 2017). During the activation/deactivation phase, expression of
the promoters increased to a maximum level followed by gradual de-
crease (P < 0.05). This is potentially due to variation in the relevant
expression level of the master regulator, XylR, activating directly Pu
and Ps, which encode for XylS triggering expression from Pm. The up-
regulatory response of these promoters was similar to previous studies
(Marques et al., 1994; Tsipa et al., 2016) proposing a general up-reg-
ulatory response of TOL in the presence of aromatics as single- or
mixed-substrates, potentially due to activation of a relevant transcrip-
tion factor and subsequent de-activation. PbenR (Fig. 3G) and PbenA
(Fig. 3H) were not expressed prior to the switch point (0.2 mM m-xy-
lene). Pu controls transcription from the upper-operon leading to m-
methyl-benzoate formation during m-xylene consumption, which does
not constitute a stimulus for the ortho-cleavage pathway (Perez-Pantoja
et al., 2015). However, below the threshold point, toluene catabolism
was enabled resulting in benzoate formation through the catalytic ac-
tivity of upper-operon enzymes. Since benzoate is known to trigger the
ortho-cleavage regulatory network (Perez-Pantoja et al., 2015) and to
strongly activate PbenR (Tsipa et al., 2016), an up-regulatory response
of PbenR was expected. Nonetheless, PbenR was not expressed, possibly
due to the presence of the multiple carbon sources (m-xylene and to-
luene) activating carbon catabolite repression (CCR) mechanisms
(Tsipa et al., 2017). BenR protein serves as the transcription factor for
PbenA and it has been suggested to be responsible for up-regulation of
PbenR expression (Tsipa et al., 2016, 2017). Thus, the lack of PbenR and
PbenA expression in the presence of m-xylene and toluene may be re-
levant to BenR repression, which is common in P. putida strains upon
activation of CCR mechanisms (Moreno and Rojo, 2008). Following
depletion of the preferred substrate, the CCR mechanisms are switched
off and the cells catabolise the remaining compounds (Moreno and
Rojo, 2008). The expression pattern of PbenA (Fig. 3H), following the
switch point, was similar to those of Ps (Fig. 3D), Pu (Fig. 3E) and Pm
(Fig. 3F) in the TOL indicating co-stimulation of the specific promoter
by the XylS transcription factor of TOL (Tsipa et al., 2016).

Microbial growth kinetics was linked to GRN by focusing on the
enzymatic steps of the GRN model that catalyse substrate(s) degrada-
tion and biomass growth. Upon exposure to the substrate(s), although
all catabolic enzymes were produced, three enzymes were considered as
rate-limiting controlling the cascades responsible for initialisation of
substrate transformation (XylU) and Krebs cycle intermediates

Fig. 2. The main gene regulatory network responsible
for m-xylene and toluene transformation to tri-
carboxylic acid (TCA) cycle intermediates which are
necessary for biomass growth. Upon induction with
substrate(s) the inactive form of XylR (XylRi) oligo-
merises forming the active molecule XylRa which ac-
tivates Pu and Ps promoters. Both XylR forms down-
regulate their own promoter, Pr. Upon Pu activation
the upper–operon, encoding for the enzymes that cat-
alyse m-xylene and toluene catabolism into the inter-
mediates m-methyl-benzoate and benzoate respec-
tively, is triggered. Ps activation and the presence of
these two intermediates lead to overexpression of the
xylS gene dimerising the inactive XylS protein to its
active protein form. XylS dimerisation results in Pm
activation that controls the meta-operon encoding for
the enzymes further catalysing the conversion of m-
methyl-benzoate and benzoate to TCA cycle metabo-
lites. Benzoate is the environmental signal activating

the ortho-cleavage regulatory network. PbenR controls transcription from the benR gene, which encodes for the BenR protein. Benzoate activates BenR which up-
regulates expression from Pm in TOL and PbenA in the ortho-cleavage network. PbenA controls the ben-operon, which encodes for the enzymes responsible for further
benzoate transformation into TCA cycle intermediates. Consequently, (A) the enzymes encoded in the upper-operon transform m-xylene and/or toluene into m-
methyl-benzoate and benzoate, respectively. m-methyl-benzoate and benzoate are converted into TCA cycle metabolites through meta- and ortho- enzymes activity.
The gene regulatory network with the overimposed regulation is represented as a (B) genetic circuit. : input; : output; : AND; : OR; : NOT; → :
potential up-regulatory mechanism.
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formation, resulting in biomass growth (XylM, BenB). Production of the
rate-limiting enzymes was modelled based on the GRN's genetic circuit
(supplementary material, Table 1), while the microbial growth kinetics
equations were constructed based on the concentration of the rate-
limiting enzymes of the GRN studied. Instigated by the threshold of
0.2 mM of m-xylene, mathematical representation of m-xylene and to-
luene biodegradation was reformulated (supplementary material,
Table 3). The parameters and variables of the hybrid GRN-GK model are
presented as supplementary material (supplementary material, Tables
4, 5).

3.2. Model analysis

Model uncertainty due to parameters was allocated by model ana-
lysis employing GSA which contributes to decrease output uncertainty
by accurate parameter estimation (Kiparissides et al., 2011). The results
of the GSA demonstrated that 22 out of 41 parameters were important
(supplementary material, Fig. 1), which incorprate biological re-
levance. Promoter expression is determined by the translation rate and
degradation parameters of the relevant regulatory transcription factors.

The significant parameter for m-xylene and toluene outputs is the as-
sociated maximum pollutant metabolic quotient based on XylU, which
is the rate-limiting enzyme responsible for initialisation of substrate
transformation controlled by Pu, confirming the link between substrate
effectors and expression of promoters. The significant parameters for
biomass output were the maximal expression of PbenR, PbenA as well as
the translation rate and degradation of the rate-limiting enzyme (BenB),
which is responsible for biomass formation. This GSA result underlines
the necessity of extending the previous TOL genetic circuit model
(Koutinas et al., 2011) to incorporate the key chromosomal ortho-
cleavage pathway to accurately capture growth kinetics during the
biodegradation of aromatics by P. putida mt-2. Parameter estimation
was performed using the independent experiment of induction with
0.7 mM of m-xylene and 0.7mM of toluene to obtain accurate values for
the significant parameters (supplementary material, Tables 4, 5). As a
result, the model accurately predicted biomass, toluene and m-xylene
concentration profiles (Fig. 3A, B) as well as promoter expression
profiles for Pr (Fig. 3C), Ps (Fig. 3D), Pu (Fig. 3E), Pm (Fig. 3F), PbenR
(Fig. 3G) and PbenA (Fig. 3H).

Fig. 3. Prediction of the GRN-GK model re-
garding biomass formulation, substrates utili-
sation and transcriptional kinetics of the pro-
moters. Shown are the model simulations of
parameter estimation ( ) and experi-
mental points for A) biomass ( ), B) m-xylene
( ) and toluene ( ), C) Pr ( ), D) Ps ( ), E)
Pu ( ), F) Pm ( ), G) PbenR ( ), H) PbenA (

) in induction with 0.7 mM of m-xylene and
0.7 mM of toluene. The results for transcrip-
tional kinetics are obtained as an average from
six individual measurements at each point and
the error bars are calculated for standard error.
The results for substrates degradation and
biomass formation are obtained as an average
from two individual measurements at each
point and the error bars are calculated for
standard deviation.
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3.3. Prediction of mixed-substrates growth kinetics

The accuracy of the validated GRN-GK model was assessed. The
function and dynamics of promoters expression (Fig. 3C-H) were suf-
ficiently described (average R2 vector = 0.71; supplementary material,
Table 6); the discrepancy can be explained due to the intrinsic com-
plexity of gene regulation as well as certain model limitations. In par-
ticular, regulation of PbenR by BenR has been incorporated into the
model based on limited experimental observations, which have not
been fully validated yet (Tsipa et al., 2016). Furthermore, although the
model accounted for PbenA expression based on BenR synthesis, it did
not consider co-regulation by the TOL-encoded active form of XylS
(Tsipa et al., 2016). Despite model limitations at gene regulation level,
bioprocess kinetics (Fig. 3A, B) were captured more accurately (R2 m-
xylene = 0.96, R2 toluene = 0.97 and R2 biomass = 0.98; supple-
mentary material, Table 7).

The GRN-GK model's performance was compared with common
models of mixed-substrate microbial growth kinetics: (1) competitive
enzyme interactions, (2) double Monod, (3) Mankad and Bungay
model, and (4) the SKIP model (Yoon et al., 1977) (supplementary
material, Table 8). The GRN-GK model displayed notable accuracy in
predicting bioprocess performance (Fig. 4A-C; R2 vector = 0.97) when
compared to the empirical models used (R2 vector of the competitive
enzyme interactions model = 0.9, R2 vector of the double Monod
model = 0.76, R2 vector of the Mankad and Bungay model = 0.69, and
R2 vector of the SKIP model = 0.76), as shown in Fig. 4D. Furthermore,
whereas the traditional models failed to capture the biomass yield
(Table 1), a crucial factor for bioprocesses design, the GRN-GK model
prediction (2.4 g/g) was extremely close to the experimentally observed
yield (2.3 g/g).

Mathematical models are limited by their narrow applicability. The
performance of the GRN-GK model under a wide range of bioprocess
conditions was evaluated: A) low pollutant concentration (0.4 mM of m-

xylene and 0.4 mM of toluene), which may not be able to support
biomass growth (Fig. 4E-G). The GRN-GK model's fidelity outperformed
(R2 vector = 0.91, Fig. 4H) the other four models (R2 vector ranged
from 0.71 to 0.88; Fig. 4H), including biomass yield prediction
(Table 1). B) Induction of the P. putida mt-2 with different concentra-
tions for the substrates (0.6 mM of m-xylene and 0.4 mM of toluene) to
explore model behaviour under simulated practical conditions of
varying substrate concentrations (Fig. 4I-K). The fidelity of the four
models was lower (R2 vector ranged from 0.76 to 0.89; Fig. 4L) com-
pared to the GRN-GK model (R2 vector = 0.96, Fig. 4L), including
biomass yield (Table 1).

3.4. Model-based gene control

The GRN-GK model was employed to design a fed-batch feeding
strategy and was based on the single-substrate (toluene) model of TOL
and ortho-cleavage promoters in P. putida mt-2 (Tsipa et al., 2016)
(supplementary material, Table 9, 10, 11). In the presence of aromatic

Fig. 4. Mixed-substrate and biomass growth experimental patterns ( ) predicted by: 1) the GRN-GK framework ( ), 2) double Monod ( ), 3)
Mankad and Bungay ( ), 4) competitive enzyme interactions ( ) and 5) SKIP model ( ). Shown are: biodegradation of (A) 0.7 mM of m-
xylene, (B) 0.7 mM of toluene, (C) relevant biomass growth, (D) R2 vector representing bioprocess performance; biodegradation of (E) 0.4 mM of m-xylene, (F)
0.4 mM of toluene, (G) relevant biomass growth, (H) R2 vector representing bioprocess performance; biodegradation of (I) 0.6 mM of m-xylene, (G) 0.4mM of
toluene, (K) relevant biomass growth, (L) R2 vector representing bioprocess performance. The results for substrates degradation and biomass formation are obtained
as an average from two individual measurements at each point and the error bars are calculated for standard deviation.

Table 1
Comparison of biomass yields obtained in experimental and simulated trials
using different models at the initial conditions tested. Biomass yields (g of
biomass per g of pollutant mixture) obtained at: A) 0.4 mM m-xylene-0.4 mM
toluene, B) 0.6 mM m-xylene-0.4 mM toluene, and C) 0.7 mM m-xylene-0.7 mM
toluene.

A B C
g biomass / g pollutant mixture

experimental 2.5 2.5 2.3
GRN-GK 2.8 2.8 2.4
double Monod 0.3 0.5 0.5
Mankad & Bungay 0.6 0.7 0.7
competitive interactions 1.6 1.7 1.7
SKIP 1.2 1.2 1.2
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effectors, the constitutively expressed Pr is the first promoter expressed
in the TOL metabolic pathway triggering subsequent metabolic activ-
ities that render its function the core element in the TOL as well as in
every interlinked metabolic pathway relevant to the biodegradation of
pollutants. P. putida mt-2 induction with a TOL effector results in down-
regulatory response of Pr which is also involved in a negative feedback
loop leading to optimised function of the TOL plasmid providing inbuilt
stability (Becskei and Serrano, 2000). An optimal fed-batch feeding
strategy profile was designed in silico (Fig. 5A) at an initial toluene
concentration of 0.4 mM formulating a dynamic optimisation problem
of controlling Pr expression to be maintained at a level close to 0.5

(Fig. 5B). Close to this level, Pr is down-regulated participating in the
negative feedback loop, whereas above this level Pr expression in-
creases (Tsipa et al., 2016). As previously observed, this increase occurs
below 0.3 mM toluene concentration (Tsipa et al., 2016). Therefore,
when Pr level exceeds 0.5, toluene concentration is below 0.3mM.
Consequently, re-activation of the Pr down-regulatory response is re-
quired by additional toluene that maximises toluene biodegradation
rate leading to Pr expression decrease close to 0.5 (supplementary
material, Table 12). The model-based gene control enabled prediction
of substrate consumption, the transcriptional kinetics of promoters in
the TOL and ortho-cleavage pathway as well as biomass growth at fed-

Fig. 5. Model-based gene control of the fed-batch toluene biodegradation process resulted in: (A) The optimum feeding schedule, and (B) the expression profile of Pr;
followed by the model simulations ( ) and experimental points ( ) for: (C) Pr expression, (D) PbenA expression, (E) toluene biodegradation, (F) biomass
growth at initial toluene concentration of 0.4mM. Comparison of fed-batch and batch process at initial toluene concentration of 0.4mM resulted in increase in the
amount of (G) biodegraded toluene, (H) biomass produced upon fed-batch operation; : initial, : toluene degraded following the model-based feeding strategy,

: biomass produced. The results for transcriptional kinetics are obtained as an average from three individual measurements at each point and the error bars are
calculated for standard deviation.
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batch mode. The TOL and ortho-cleavage promoter expression were
adequately modelled (TOL-Pr R2 = 0.82, ortho-cleavage-PbenA R2 =
0.77; Fig. 5C, D) considering the intrinsic GRN complexity and certain
model limitations, as explained above. Furthermore, accurate predic-
tion of toluene biodegradation (R2 =0.82) and biomass formation (R2

=0.93) kinetic patterns (Fig. 5E, F), was observed. Accordingly, the
gene-based feeding strategy of the pollutant in the fed-batch experi-
ment resulted in significant increase in toluene biodegradation (23%;
Fig. 5G) and biomass formation (58%; Fig. 5H), as compared to the
batch culture conducted at the same initial toluene concentration.

4. Discussion

Herein, a novel hybrid framework has been developed that connects
targeted GRN modelling to growth kinetics for bioprocess design and
optimisation. The framework: (a) demonstrated quantitative control of
a targeted complex regulatory network, (b) achieved systematic re-
presentation of substrate(s) metabolism, (c) enabled accurate predic-
tion of bioprocess performance and biomass yield, (d) efficiently pre-
dicted mixed-substrate growth kinetics under several conditions, and
(e) was compared against other commonly applied models demon-
strating superior performance. The model-based control achieved at the
gene level serves as a proof-of-concept to evaluate the application of
engineering approaches for direct re-programming of cellular activity
that either avoids strain manipulation or used for enhancing robustness
on synthetic genetic circuit design (Nielsen et al., 2016) similarly to
control engineering strategies (He et al., 2016).

Bioprocess optimisation requires accurate monitoring and estima-
tion of critical bioprocess parameters, such as specific growth rate,
substrate utilisation, and biomass and/or product formation rates.
Currently, the 70-year old Monod (and Monod-type) kinetic models are
being universally used in biotechnology and systems biology despite
being empirical and treat the bioprocess as a ‘black box’ while omitting
gene regulatory mechanisms. Consequently, they lack of predictability
over a broad range of conditions. Furthermore, mixed substrate model
development has stagnated; Monod-type models assume competition or
parallel substrate utilisation (Yoon et al., 1977) based on unspecified
substrate inhibition while ignoring that specific gene regulatory net-
works control substrate transformation and biomass/product forma-
tion. Over the last 25 years, modelling approaches such as cybernetic
(Ramakrishna et al., 1997) and structured models (Nikolajsen et al.,
1991), which are mainly based on enzyme level control and built under
steady state assumptions, have not yielded significant progress. In
contrast, the GRN-GK framework demonstrated that double-substrate
degradation proceeds through the same metabolic pathway/gene reg-
ulatory network whereby the preferred substrate (m-xylene), which is
more methylated, induced the first regulatory response of the TOL and
ortho-cleavage promoters followed by the second regulatory response
due to the other non-preferred substrate (toluene), which is less me-
thylated. This bi-modal promoter behaviour specified the threshold
switch point of substrate utilisation. As a result, the platform accurately
predicted mixed-substrate bioprocess performance and biomass yield
under a wide range of operating conditions. Consequently, the GRN-GK
framework can be applied to elucidate fundamental problems asso-
ciated with the prediction of real process phenomena such as substrate
(s) availability and fluctuating pollutant loads (Koutinas et al., 2007a,
b) enhancing bioremediation or production of bio-based commodities.

Feeding strategy optimisation of fed-batch bioprocesses is essential
in bioremediation and industrial-scale life sciences and biotechnology
applications. Fed-batch feeding strategy scheduling is currently opti-
mised either experimentally or through model-based optimisation; the
latter conducted by performing stochastic or deterministic dynamic
optimisation (Banga et al., 2005) on empirical growth kinetics models
through maximisation of a performance index, commonly being bio-
mass productivity (De la Hoz Siegler et al., 2012; Kiparissides et al.,
2015; Mozumdera et al., 2014) or an economic index based on the

operation profile and final concentrations (Banga et al., 2005). The
GRN-GK framework proposes an exciting new approach to the feeding
strategy optimisation of fed-batch systems by performing deterministic
dynamic optimisation through control of the performance of a key
promoter, which regulates substrate degradation and biomass forma-
tion. Consequently, optimal feeding strategy was achieved by main-
taining constant gene activity avoiding unnecessary substrate depletion
in contrast to the traditional fed-batch optimisation strategies that feed
substrate just prior to the substrate being depleted.

The interconnected fields of systems and synthetic biology have
provided new avenues in biotechnology and biomedicine (Campbell
et al., 2017; Ellis et al., 2009) and aim to become applicable in bio-
technology and industrial bioprocessing (Campbell et al., 2017); how-
ever, their applicability in industrial bioprocesses is currently limited.
Systems biology approaches generate large information datasets re-
garding the phenotypic and physiological characteristics of the micro-
organisms. However, global modelling of gene regulatory networks is
challenging due to: (1) the excessive detail of genome annotation,
which is constantly updated and refined to incorporate new genome-
based knowledge (Campbell et al., 2017); (2) the large number of
possible solutions explaining equally the problem of which only one can
be biologically relevant (De Smet and Marchal, 2010); (3) incorrect
prediction of regulatory interactions between a transcription factor(s)
and target genes (Marbach et al., 2012); (4) simplifying model as-
sumptions profoundly affecting accuracy (Marbach et al., 2010); and
assuming steady-state conditions (Park et al., 2011). In contrast, the
GRN-GK framework follows a targeted approach to capturing biological
behaviour of complex gene regulatory networks (Koutinas et al., 2010)
by focusing on the main metabolic pathway of P. putida mt-2 activated
upon exposure to mixed-substrates. By utilising consistent, systematic
time-series data of specific promoter(s) mRNA expression and subse-
quently efficiently connecting it to growth kinetics, an accurate, dy-
namic, experimentally-validated, computationally tractable, and pre-
dictive model was developed capable of capturing mixed-substrates and
growth patterns of industrially-relevant bioprocesses. Whereas genome-
scale models are unable to represent time-scale changes, such as pro-
moter activation that occurs within minutes, and environmental
changes, such as substrates fluctuation, the GRN-GK framework is
capable of identifying threshold switch point(s) of mixed-substrate
utilisation thus representing a systematic optimal bioprocess design tool
in industrial bioprocessing. Therefore, this framework may constitute a
practical complementary approach to systems and synthetic biology.

GSA of the GRN-GK model revealed significant parameters asso-
ciated with promoter expression, substrate utilisation (confirming the
link between substrate effectors and expression of promoters), and
biomass formation. The importance of this mathematical analysis is that
the identified significant parameters incorprate biological relevance.
Specifically, based on GSA results if the binding site of XylRa on Pu or
that of BenRa on Pm was modified the biodegradation of aromatics
would be significantly affected. Therefore, GSA analysis could prove to
be a valuable tool for model-driven strain modifications apart from
systems genetic or metabolic engineering model-based approaches
employed for strain optimisation (Lee and Kim, 2015; Ranganathan
et al., 2010).
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